MINST数据库是由是一个手写数字的数据集,官方网址:http://yann.lecun.com/exdb/mnist/ 。      
 > MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.
   MINST数据总共有4个包,解压出来的数据如下:   
    {:height=”600px” width=”600px”}  
train-images-idx3-ubyte.gz,train-labels-idx1-ubyte.gz:提供了60000张,28*28像素的黑底白字图片用来训练 
t10k-images-idx3-ubyte.gz,t10k-labels-idx1-ubyte.gz:提供了10000张,28*28像素的黑底白字图片用来测试    
 
   mnist提供的图片有784(28*28)个像素点,把每个像素点的值,组织成一个一维的数组,作为输入参数。形式如下:  
   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.386 0.379 0....... 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]   ```         图片的标签以一维数组给出,每个元素代表出现的概率,形式如下:      `[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. ]` 代表数字6    `tensorflow`官方支持数据集的读取,使用代码如下:     ``` python    # coding:utf-8    from tensorflow.examples.tutorials.mnist import  input_data    minst=input_data.read_data_sets('./data/',one_hot=True)    #打印数据数量    print( "train data size:",minst.train.num_examples)    print( "validation data size:",minst.validation.num_examples)    print( "test data size:",minst.test.num_examples)    #打印数据    print(minst.train.labels[0])    print(minst.train.images[0])    #打印前200行数据    BATCH_SIZE=200    xs,ys=minst.train.next_batch(BATCH_SIZE)    print("xs shape:",xs.shape)    print("ys shape:",ys.shape)  ```    输出到控制台结果:      ``` cte  train data size: 55000  validation data size: 5000  test data size: 10000  [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]  [ 0. 0.....0.      0.3529412 0.5411765  0.9215687  0.9215687  0.9215687  0.9215687  0.9215687 0.9215687  0.9843138  0.9843138  0.9725491  0.9960785  0.9607844 0.9215687  0.74509805 0.08235294 0. 0. 0.....]  xs: [[0. 0. 0. ... 0. 0. 0.]  [0. 0. 0. ... 0. 0. 0.]  [0. 0. 0. ... 0. 0. 0.]  ...  [0. 0. 0. ... 0. 0. 0.]  [0. 0. 0. ... 0. 0. 0.]  [0. 0. 0. ... 0. 0. 0.]]  xs shape: (200, 784)  ys: [[0. 0. 0. ... 0. 0. 0.]  [0. 0. 0. ... 1. 0. 0.]  [0. 0. 0. ... 0. 0. 0.]  ...  [0. 0. 0. ... 0. 0. 0.]  [0. 0. 1. ... 0. 0. 0.]  [1. 0. 0. ... 0. 0. 0.]]  ys shape: (200, 10) 
 
 既然是图片数据,我们就能把他们都还原过去,代码如下:   
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 import  numpy as  npimport  structfrom  PIL import  Imageimport  osdata_file = 'train-images-idx3-ubyte'   data_file_size = 47040016  data_file_size = str (data_file_size - 16 ) + 'B'  data_buf = open (data_file, 'rb' ).read() magic, numImages, numRows, numColumns = struct.unpack_from(     '>IIII' , data_buf, 0 ) datas = struct.unpack_from(     '>'  + data_file_size, data_buf, struct.calcsize('>IIII' )) datas = np.array(datas).astype(np.uint8).reshape(     numImages, 1 , numRows, numColumns) label_file = 'train-labels-idx1-ubyte'   label_file_size = 60008  label_file_size = str (label_file_size - 8 ) + 'B'  label_buf = open (label_file, 'rb' ).read() magic, numLabels = struct.unpack_from('>II' , label_buf, 0 ) labels = struct.unpack_from(     '>'  + label_file_size, label_buf, struct.calcsize('>II' )) labels = np.array(labels).astype(np.int64) datas_root = './pic/'   if  not  os.path.exists(datas_root):    os.mkdir(datas_root) for  i in  range (10 ):    file_name = datas_root + os.sep + str (i)     if  not  os.path.exists(file_name):         os.mkdir(file_name) for  ii in  range (numLabels):    img = Image.fromarray(datas[ii, 0 , 0 :28 , 0 :28 ])     label = labels[ii]          file_name = datas_root + os.sep + str (label) + os.sep + \                 str (ii).zfill(5 ) + '.png'      img.save(file_name)