1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
| import numpy as np import matplotlib.pyplot as plt
seed=2
def generateds(): rdm=np.random.RandomState(seed) X=rdm.randn(300,2)
Y_=[int(x0*x0+x1*x1<2) for (x0,x1) in X]
Y_c=[['red' if y else 'blue' for y in Y_]] X=np.vstack(X).reshape(-1,2) Y_=np.vstack(Y_).reshape(-1,1)
return X,Y_,Y_c
if __name__=="__main__": X,Y_,Y_c=generateds() print("X:\n",X) print("Y_:\n",Y_) print("Y_c:\n",Y_c)
```
`forward.py文件` ``` python
import tensorflow as tf
def get_weight(shape,regularizer): w=tf.Variable(tf.random_normal(shape),dtype=tf.float32) tf.add_to_collection("losses",tf.contrib.layers.l2_regularizer(regularizer)(w)) return w
def get_bias(shape): b=tf.Variable(tf.constant(0.01,shape=shape)) return b
def forward(x,regularizer): w1=get_weight([2,11],0.01) b1=get_bias([11]) y1=tf.nn.relu(tf.matmul(x,w1)+b1)
w2=get_weight([11,1],0.01) b2=get_bias([1]) y=tf.matmul(y1,w2)+b2 return y
```
最终利用所有的方法拟合的代码:
``` python
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import generateds import forward
STEPS = 40000 BATCH_SIZE = 30 LEARNING_RATE_BASE = 0.001 LEARNING_RATE_DECAY = 0.999 REGULARIZER = 0.01
def backward(): x = tf.placeholder(tf.float32, shape=(None, 2)) y_ = tf.placeholder(tf.float32, shape=(None, 1))
X, Y_, Y_c = generateds.generateds() y = forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, 300 / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True)
loss_mse = tf.reduce_mean(tf.square(y - y_))
loss_total = loss_mse + tf.add_n(tf.get_collection('losses')) train_step = tf.train.AdadeltaOptimizer(learning_rate).minimize(loss_total)
with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op)
for i in range(STEPS): start = (i * BATCH_SIZE) % 300 end = start + BATCH_SIZE sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
if i % 2000 == 0: loss_v = sess.run(loss_total, feed_dict={x: X, y_: Y_}) print("After %d training steps,loss on all data is %f" % (i, loss_v))
xx, yy = np.mgrid[-3:3:0.01, -3:3:0.01] grid = np.c_[xx.ravel(), yy.ravel()] probs = sess.run(y, feed_dict={x: grid}) probs = probs.reshape(xx.shape)
plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(Y_c)) plt.contour(xx, yy, probs, levels=[.5]) plt.show()
if __name__ == "__main__": backward()
|